Radon transformation
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Here I derive the inverse of Radon transform [1].

The 2D Radon transform gives what one usually measures in a tomography experiment. Given a function
f(x,y) of which you want to get information, you may be able to measure its integration over a straight
line with distance r to the origin point, whose normal vector has an angle 8 with the x-axis. See Fig. 1. We
denote this transformation by

[Rf](6,71) =/ ds f(rcos® — ssin6,rsin 6 + scos 6). 1)

We want to derive its inverse transform.
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Figure 1: Illustration of Radon transformation

It is easy to see that, the 1D Fourier transform of R f with argument r is equivalent to the 2D Fourier
transform of f, since for any (x, y) on the integration line, its inner product with (6, k) equals rk. Explicitly,
we have

[F,Rf1(6,k) = V27 [F .y f] (k cos 8, ksin 6), (2)
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Define .
Ky == [ dfjges =—2 (5)
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and then we have
1 27 o0
f(x,y)=ﬁ/ d@f drK(xcos@+ysin6 —r)[Rf](6,k). (6)
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This is the inverse Radon transform.
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